Electric Vehicle Solution Schneider Electric

Jan. 2011

Schneider Gelectric

The energy dilemma is here to stay

Our answer: Helping people make the most of their energy

З

More than 170 years of history

An international and sustainable growth

15.8 billion sales in 2009

34 % of sales in new economies

100000+

people in 100+ countries

330 in *Fortune 500* ranking

5% of sales devoted to R&D

A unique positioning...

A deep commitment to sustainable development...

Environment

•Adherence to standards like RoHS, REACH, WEEE •Eco-design •ISO14001 certification

Business

- •Head of Green Grid
- •Signing the Clinton Climate Initiative
- •Partner of Alliance to Save energy

Ethics

•Global compact of the United Nations •Principles of responsibility signed by every employee

Access to energy

Access to electricity for 1.6 billion people
Training disadvantaged young people in the field of energy
Business angel for local entrepreneurs

A measured commitment •The planet & society barometer

... especially to sustainable mobility

The electric vehicle is the automotive industry's answer to the climate change problematic and to fossil fuel scarcity.

With no greenhouse gas emission nor particles and silent, the electric vehicle is an efficient and sustainable solution for urban centres.

Source : http://www.renault.com.au/about-us/renault-ze/

EV, one of the links in the sustainable urban mobility chain

- 50% of the worldwide population is urban
- Their daily covered distance is lower than 20 km.
- One of the solutions to reduce urban pollution, congestion, and adverse health effects is the development of sustainable, energy efficient multi-modal transportation systems, from public mass transportation to individual transportation.
- The EV is the last missing link in the overall sustainable urban mobility chain and the adequate recharging infrastructure is a key success factor for this system.
- See UNCRD Environmentally Sustainable Transport initiative in Asia, Johannesburg Plan of Implementation, AMI3 program of ADEME...

The connection between EV infrastructure and smart grid

- The introduction of EV will increase the demand for energy and thus solicit and stress the electrical network. → Demand response management by utilities.
- EV may one day enable their owners to inject their non consumed energy into the utilities electrical network. → Vehicle to grid This is most likely to happen in 2 cases:
 - In case of critical peak reached on the network to avoir black out. In that case, utilities would need to use the batteries' available energy for a very short time and in very rare occasions. Batteries were conceived to tract vehicles and not to feed the network.
 - In case of local black out provoked by storms or heavy snowing episodes. The battery could be used as back-up power to ensure the house's energy autonomy.

Schneider-Electric is a partner in the development of electric vehicles

How to develop relevant offers for this new market?

- We participate in experiments.
- We are Launching our offer.
- We are involved in the standardization process.
- We are acting in institutions working groups.
- We build **alliances** to answer quickly.

Through this commitment, we build a suitable offer for future needs.

• Offer presentation.

Standardization : SE is an actor in committees for the EV charging infrastructure :

Organism	TC/SC	Published standards	Торіс
IEC	TC69	61851 1, 2.1, 2.2	Charging systems
IEC	SC23H	NP 62196	Physical connectors
IEC	TC22/SC21a	PT LiP	Lithium ion cells
IEC TC64	TC64	50364-7-760	Electrical installations
ISO	TC22/SC21	N2086	Lithium ion batteries
ISO	TC22/SC21	6469	Electric security on EVs
ISO/IEC	TC22/SC3	JWG V2G C1	Communication protocol vehicle/grid
USA-SAE	Hybrid vehicle task force	J1771	Definition of charging connector
USA-SAE	Hybrid task force	J2836	Communication between vehicle and grid

IEC 61851- Mode 1

Mode 1: Fixed, non-dedicated socket.

Electric vehicle connected to the main AC distribution network through standard plug-in connector bases (standard current: 10 A) located on the power supply side, single-phase or three-phase, with earthing power supply and protection conductors.

1.3

IEC 61851- Mode 3

Mode 3: Fixed, dedicated circuit-socket.

Electric vehicle connected to the main AC distribution network through specific connector and dedicated circuit; control and protection functions permanently installed in the installation.

(installed with smart device and protection device)

IEC 61851- Mode 2

Mode 2: Non-dedicated socket with cable-incorporated protection device.

Electric vehicle connected to the main AC distribution network through standard plug-in connector bases, single-phase or threephase, with earthing power supply and protection conductors and cable-incorporated piloting function between the electric vehicle and the control connector or panel.

(cable-incorporated smart device and protection device)

IEC 61851- Mode 4

Mode 4: CC connection.

Electric vehicle indirectly connected to the main AC distribution network through a standard external charger. Control and protection functions and vehicle recharging cable permanently installed in the installation.

(AC/CC outside vehicle)

EV Plug Alliance by 17 major industrial players

1.7

charge

Alliance is totally **open** to new members

Create an eco-system with one

to revolutionize the electric vehicle

strong standard, easing development

of solutions and practical applications

YAZAKI

On the car side... Large variety of inlets and connectors

Several for low power (16A-32A) 2 connectors for high power (1 DC, 1 AC)

On the infrastructure side...

In the 3 types defined in the future standard CDV 62196-2, types 2 and 3 are considered...

Characteristics Nb of Phases	Type 1 Single Phase	Type 2 Single Phase Three Phases	Type 3c Single Phase Three Phases
Current	32 A	70 A (Single Ph) 63 A	32 A
Voltage Nb of Pins	250 V 5	500 V 7	500 V 7
Shutters IPxxD	No	No	Yes
Socket Drawing			

So, how to deal with the plug issue

- A large variety of connectors on vehicle side and plugs on infrastructure side...
- Could lead to the need for many cables in a car
- User: « I just want **ONE** cable with my car ! And be able to charge everywhere in my country and in Europe ».

Solution exists for several use cases

•For slow charge on domestic socket : with a limitation to 10A, will provide a europe wide solution, in mode 2.

- •For fast charge : problem solved with attached cable to the charge spot
 - •Only type 2 inlet / connector on the car in AC
 - •Chademo DC inlet/connector on car for DC
 - •Dual cord pump, like diesel and unleaded

But what about standard charge (3-22 kW ?)

Standard charge (3-22 kW AC)

21.

Must comply with existing standards and safety regulations.

• IEC 61851-1 Ed2 safety standards

 Several countries impose « Shutters IP xxD » on the infrastructure side.

Must address car OEM requirements on car side connector.

Must provide **single** cord solution for user.

The question is not to select a plug but to select a **connection system**.

EV Plug Alliance proposal up to 32 A...

- Apply a concept similar to USB standard: a unique standard with different type at each end.
- On **infrastructure side**, up to 32A, when the cord is **detachable**, select type 3 EV Plug Alliance, with unique footprint for mono / tri, 16 or 32 A and with shutters.
- On car side, connector selected by car OEM.

EV Plug Alliance proposal Over 32A

- Over 32A (not at home), cord should be permanently attached to the spot, stored in a storage compartment which may be locked, hence not useable by non informed persons.
- The connector at the end of this permanently attached cord is type 2.

A convergence solution that benefits everyone

25

The approach solves all issues :

- A unique cord needed in each car in Europe, as required.
- Type 3 on the wall provides a solution fully compatible with national codes in all european countries and optimized for the use in buildings, ready for V2G.
- Type 2 connector on the car for fast charge, which is critical for many car OEM who have already completed car design
- Fully in line with existing IEC standards and standards in preparation

A very flexible solution:

- Allows evolution of connectors on the car side without need of retrofit in buildings (eg., if the car plugs features AC/DC capability in the future)
- Because it does not impose the same type on both sides, it gives flexibility to select an optimized connector on the car for low power EVs: the cord for these cars would have a type 3 on the wall side; this will be very important for interoperability for small cars or scooters to use the charge spots.

Schneider-Electric Offer

Our 4 stakes

Safety of users

Daily connection & disconnection of 30 to 60A sockets !

Management

Charging load to manage / Demand Response Panel and installation

Before or after the meter, management integrated or not with home control

Ergonomics

Take into account the end user's requirements (simplicity, rapidity...)

27

Charging power / duration (ex 20kWh)

	Standard Slow	Fast KW QD	E		
	Slow charge	AC Single Phase : 230V – 8/10A Domestic Socket !			12h to 8h
	Standard charge 🍽	AC Single Phase : 230V – 16/32A AC Tri-Phases : 400V – 16/32A			8h to 1h
	Fast charge	From 43kW up to 150kW (future) DC or AC – pending on car architectur	e	3	30min to 10min
	Battery exchange I	In a few minutes			3min

The recharging infrastructure, the key success factor for the electric vehicle

Our Offer

- Products: All the components for EV Recharging Spots and Stations.
 - MCB, RCDs, RCBO, RCCB, Contactors, Load Controller, Surge Arrestors,
 - Energy Measurement, ...

• Equipments:

• Ready to install Recharging Spots and Stations

Solutions

- Supervision
- Services
- Customised projects

Our offer's key added values

- 1. Interoperability → EV, PHEV, all brands
- 2. People and goods safety → NO compromise
- 3. Ergonomy → simple gesture, fast, auto, pilot lamp...
- Charging efficaciency → best compromise between rapidity and economy, energy management (modulation de charge, délestage, Vehicle to grid...)
- 5. Identification and authentification → vehicle, people
- Measurement (time, cycles, kWh, statistics, billing) → for all types of business models and to guaranty EV footprint)
- Services enabler → billing, fleet management, alerts, and services still to be invented (diagnosis, pre-heating, hotline, info...)

Residential

Safety

- Mode 3
- Earth leakage protection
- Shutters on connectors
- Lighting protection

• Ergonomics

- Cable arrangement
- Outlet arrangement
- User Interface
- Connectors

Energy management

31.

1. Resi recharging spot

➔ Wall mounted

➔ Ground-set

Standard offer 3kW

- Residual current device
- Contactor
- •Contrôleur FP ou CPL
- Socket
- Coffret extérieur

Options

2nd socket
6 KW upgrade
Surge arrester
Metering (statistics, billing)
Off-peak contactor
Digital time switch
Load-shedding contactor
GPRS Modem
Cable and base

Evolutions

New enclosure (look& feel) ergonomy)
Socket (ergonomy, standard)
Energy management (Load-shedding, etc.)
Vehicle to grid

Socket moving possibility

Customer's benefts •Safety •Robustness and sealing •Flexibility

33

Parking wallmounted

Parking floorstanding

2. Parking recharge station

→ Wall-mounted cabinetscoffrets muraux

➔ Ground-set

Architecture standard 4 spots (6 - 23 kW)•Connection to existing LV switchboard •Customer interface cabinet •Residual current devices Badge reader Controller (identification) Contactor •FP or CPL controller Recharging spots Sockets Lights **Options** •2nd socket on spots •Surge arrester •Metering (statistics, billing) •GPRS Modem •Vehicle presence detection

•Socket interlocking

•Energy management, diagnosis...

New enclosure (look& feel, ergonomy)
Socket (ergonomy, standard)
Energy managemet
Distributed architectures

Evolutions

Customer's Benefits
•Safety
•Evolutivity

35

Example of car park type architecture

Fast charging Station Development

• AC, DC or AC+DC solution

- DC output 500V 125A Chademo
- AC output 400V 63 A
- Payment Device integrated
- Time to market 01/2011

37

3. Fast charging station

Standard content 4X43kW

•MV/LV substation network connection •Not necessary if no power increase expectation

- •LV distribution cabinet
 - •Residual current device
 - •FP or CPL controller
 - Contactors
- Pole and connectors
- •Badge reader
- Controller and HMI
- •GPRS Modem

Options

- •Dry transformer (indoor)
- •DC charger
- •Active filtering
- •Environment integration design

Customer benefits

- Safety
- Robustness
- •Upgradeability
- •Compactness

Standard IEC v.s. GB

Charging Modes in IEC & GB (Mainland China)

	<u>IEC 61851</u>	<u>GB/T XXXX</u> *
Mode 1	IEC-Mode 1 Not specify 	CN-Mode 1 Not Recommended • 16A, 250V • 1 Phase / RCD
Mode 2	IEC-Mode 2 Not specify Depend on countries 	CN-Mode 2 16A, 250V 1 phase / Pilot
Mode 3	IEC-Mode 3 Not specify Depend on countries 	CN-Mode 3 • 32A, 250V • 1 phase / Pilot
Mode 4	IEC-Mode 4 Up to 1000 VDC Depend on countries 	CN-Mode 4 • 750V DC • 125A / 250A / 400A

• * It has not been officially released but in the progress of final review.

Charging Plug/Socket in IEC & GB

41

Draft of China EV Standards (under discussion)

- Connection set for charging Conductive charging of electric vehicles — Part 1: General requirements
- Connection set for charging Conductive charging of electric vehicles — Part 2: AC charging coupler
- Connection set for charging Conductive charging of electric vehicles
 Part3: DC charging coupler
- To be officially released in Dec end 2010 or Jan 2011

Lead by CATARC

- Communication protocols between off-board conductive charger and BMS
- Communication protocols between EV onboard charger and AC charging spot

To be official ly released in Q1 2011

Lead by CEC

• Design code for electric vehicle charging station

The launching schedule is not clear

Lead by CEC

Case Reference

EV : Experiments (extract)

• France, Kleber: Toyota

- Strasbourg city
- 100 Toyota Prius Hybrides Plug-In
- 135 WallMounted and Poles recharging spots Schneider-electric
- Q1 2010 to 2011

nce Schneider better place

• France, SAVE: Renault et Nissan

- Yvelines/Seine Aval/IIe de France
- 100 Renault & 20 Nissan EV
- 300 WallMounted and Poles recharging spots Schneider-Electric
- Installation = Q1 2011
- Experimentation = 2011 to 2012

EV : Experiments (extract)

- Danemark, UN conference
 - Copenhague city
 - SE Vehicles and Recharging Stations available at this UN summit
 - Installation = Q4 2009

• Belgium, Fast Charge

- Schneider Electric delivers universal charging spots for electric vehicles to Total Belgium
- 6 Fast chage stations
- Installation = Q4 2010

Case Pictures

46

Strasbourg Project – Multipoint Spots

• Kleber , France

- Multipoint spot (6~23 KW)
- Electrical protection
- Card Reader
- Specific Coupler by EV Alliance
 - \checkmark Schneider is one of 3 founders of the EV Alliance
- 1 spot for 2 EV cars.
- Flexible Cable

EV pilot projects

Pilot projects with partners

135 spots in Strasbourg starting from April 2010

Supply fast chargers by Schneider Electric / Fuji to Nissan premises in Japan

100 spots near Paris in October 2010

RENAULT Ultra fast charging station in Grenoble with advanced energy management functions

350 set of HMI for fast chargers in Japan

Huangming Project - 1st Project in China

• Huangming Sunny Vally, Dezhou, Shandong Province, China

• 8 AC Charging Spots

- AC Charging spot, provide
 - 220V / 380V, 32A
 - □ meanwhile DC 48V
 - no pilot function due to less the offer of control board
- Combined in electrical monitoring system
 - Schneider SCADA also provided by project team

Thanks for your attention!

